Raspberry Ketone Protects Kidney Damage in Diabetic Nephropathy by Improving Kidney Mitochondrial Dysfunction

Author:

Ma Jiawang1,Wang Xin1,Xu Meng1,Chang Ying2ORCID,Dong Mingxin3,Sun Chengbiao3,Wang Yan3,Zhang Jianxu3,Xu Na2,Liu Wensen13ORCID

Affiliation:

1. College of Life Science, Jilin Agricultural University, Changchun, PR China

2. Teaching Affairs Office, Jilin Medical University, Jilin, PR China

3. Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, PR China

Abstract

Mitochondrial dysfunction and oxidative stress play essential roles in the pathogenesis of diabetic nephropathy (DN). The respiratory oxygen consumption and oxidative stress status of kidney mitochondria are closely associated with the development of DN. In this study, raspberry ketone (RK), the predominant bioactive component extracted from raspberry, was applied to treat the established DN mice model. This study investigated whether RK protects the kidneys of high-fat and high-sugar/streptozotocin (STZ)-induced diabetic rats by inhibiting oxidative stress and ameliorating mitochondrial dysfunction. Besides, the DN mice models were established by injecting high-fat and high-sugar/STZ (130 mg/kg, intraperitoneal injection). The animals were randomly divided into the control group (normal saline, ig), DN group (normal saline, ig), DN + RK group (200 mg/kg RK + normal saline, ig), DN + RK group (400 mg/kg RK + normal saline, ig), and DN + Metformin (Met) (200 mg/kg Met + normal saline, ig). Regular monitoring of fasting blood glucose (FBG) levels was observed in mice. After 10 weeks of drug treatment, the kidneys of mice in each group were analyzed using ultrasound, and the mice were euthanized humanely. Kidney weight (KW)/body weight (BW) and kidney injury, mitochondrial function, and oxidative stress indicators were determined. The histopathological changes in renal tissue were observed after hematoxylin and eosin (H&E) staining. The results recommended that RK has a renoprotective function on DN mice by improving mitochondrial dysfunction and inhibiting oxidative stress.

Publisher

SAGE Publications

Subject

Complementary and alternative medicine,Plant Science,Drug Discovery,Pharmacology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3