Exploring (Un)Covered Potentials of Industrial Hemp (Cannabis sativa L.) Essential Oil and Hydrolate: From Chemical Characterization to Biological Activities

Author:

Šovljanski Olja1,Aćimović Milica2ORCID,Sikora Vladimir2,Koren Anamarija2,Saveljić Anja1ORCID,Tomić Ana1,Tešević Vele3

Affiliation:

1. Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia

2. Institute of Field and Vegetable Crops Novi Sad, Maksima Gorkog 30, 21000 Novi Sad, Serbia

3. Faculty of Chemistry, University of Belgrade, Studentski Trg 12-16, 11000 Belgrade, Serbia

Abstract

Objectives The present study focused on exploring the chemical composition of essential oil and corresponding hydrolate obtained by steam distillation of industrial hemp ( Cannabis sativa L.) cultivar “Helena” (low THC content). Methods Chemical characterization of industrial hemp essential oil and hydrolate was performed by gas chromatographic and gas chromatographic-mass spectrometric analysis, while biological activities included antimicrobial and antioxidant tests. Antimicrobial activity was determined by measuring diameters of the inhibition zone by using a disc-diffusion method with nine microbial strains from ATCC culture. Moreover, minimal inhibitory concentration (MIC) as well as time-kill kinetic studies, antiadhesion, and antibiofilm formation potential were also evaluated. Antioxidant activity was evaluated through three different antioxidant assays: 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azinobis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS●+), and reducing power (RP). Results The gas chromatography mass spectrometry analysis showed that the main compound in the essential oil was trans-caryophyllene (37.4%), followed by caryophyllene oxide (12.4%) and α-humulene (11.0%), while in the hydrolate it was 1,8-cineole (11.5%). Results showed that industrial hemp essential oil and hydrolate exhibited no antimicrobial activity against gram-negative bacteria, yeasts, and fungi, while gram-positive bacteria were sensitive. Therefore, in the following step, MIC was determined by microdilution method. The lowest MIC for essential oil (12.5%) was obtained for Enterococcus faecalis and Staphylococcus aureus, while this value doubled for Listeria monocytogenes. Conversely, the MIC for hydrolate was 100% for all gram-positive bacteria. Antioxidant activity showed that industrial hemp essential oil and hydrolate have potential as natural sources of antioxidants. Conclusion This research confirmed the previously proven antimicrobial and antioxidant activities of industrial hemp essential oil. The novelty lies in the antimicrobial and antioxidant activity of hydrolate, which is practically waste, but has great potential to be a useful by-product.

Funder

Ministry of Science, Technological Development and Innovation of the Republic of Serbia

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3