Targeted Development-Dependent Metabolomics Profiling of Bioactive Compounds in Acanthopanax senticosus by UPLC-ESI-MS

Author:

Xu Mingyuan12ORCID,Wang Yingwei12,Wang Qianbo3,Guo Shenglei2,Liu Yang4,Liu Jia4,Tang Zhonghua4,Wang Zhenyue2ORCID

Affiliation:

1. First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China

2. School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China

3. The First Affiliated Hospital of Clinical Medicine, Guangdong Pharmaceutical University, Gangzhou, China

4. Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin, China

Abstract

An ultra-performance liquid chromatography-electrospray ionization-mass spectrometry targeted metabolomics strategy was applied to analyze protocatechuate, syringin, eleutheroside E, isofraxidin, hyperoside, kaempferol, and oleanolic acid, the active compounds in 3-year-old, 5-year-old, and 9-year-old Acanthopanax senticosus. Then, targeted metabolomics was conducted with 3 growth year plants to identify 19 phenolic metabolites related to the above-mentioned active compounds, including 9 C6C3C6-type, 6 C6C3-type, and 4 C6C1-type. Multivariate statistical analysis was applied to the bioactive metabolite data, and targeted metabolic profiling was used for marker compound classification and characterization. The results showed that 7 active compounds in the roots and stems in the 3 growth year plants differed. The principal component “Q” values showed that the total contents of 7 active compounds in 5-year-old roots and stems were higher than in other growth years. Results of targeted metabolomics profiling of 19 phenolic metabolites showed that the C6C1-type compounds accumulated in 9-year-old plants, the C6C3-type in 3-year-old plants, and the C6C3C6-type in 5-year-old plants. The stems had the greatest accumulations of the phenolic metabolites. C6C1 and C6C3-type metabolites are the most abundant in both roots and stems. In conclusion, the active compounds and pharmacological effects of A. senticosus in different growth years are different. The best harvest age for A. senticosus roots and stems was 5 years. The accumulation of 19 phenolic metabolites in different growth years also showed significant differences.

Funder

Heilongjiang Province Foundation for The National Key Research and Development Program of China

national key research and development program of china stem cell and translational research

Post-Doctoral Foundation of Heilongjiang Province of China

Key Project of Heilongjiang Provincial Administration of Traditional Chinese Medicine

Publisher

SAGE Publications

Subject

Complementary and alternative medicine,Plant Science,Drug Discovery,Pharmacology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3