Evaluation on Hepatoprotection of Dihydromyricetin in Acetaminophen-Induced Hepatotoxicity Based on Analysis of Inflammation and Apoptosis Mediated by PI3K/AKT Pathway

Author:

Gong Jingli1,Zhang Huifeng1,Yu Huan1,Zhang Xiaomei1,Wang Ruman2,Gao Juntao3ORCID

Affiliation:

1. College of Pharmacy, Jilin Medical University, Jilin City, Jilin Province, China

2. College of Xinglin, Liaoning University of Traditional Chinese Medicine, Shenyang City, Liaoning Province, China

3. Department of Physiology, Jilin Medical University, Jilin City, Jilin Province, China

Abstract

Purpose: We aimed to investigate whether dihydromyricetin (DHM) could alleviate acetaminophen (APAP)-induced liver damage in mice, and to verify whether the process is associated with the PI3K/AKT signaling pathway. Methods: The contents of DHM in serum and related physiological indicators in blood and liver tissue were measured, respectively. We used haematoxylin and eosin (H&E), TUNEL, Hoechst 33,258, immunofluorescence assay and western blot methods to comprehensively assess the protective mechanism and therapeutic effect of DHM on liver damage induced by APAP (250 mg/kg) in mice. Results: APAP (250 mg/kg) could increase the expression of alanine aminotransferase (ALT), aspartate aminotransferase (AST), tumor necrosis factor-α (TNF-α), and interleukin 1β (IL-1β) and cause 4-hydroxy-2-nonenal (4-HNE) and Cytochrome P450 2E1 (CYP2E1) overexpression and stress response in the PI3K/AKT pathway. DHM was also detected in the serum of mice about five minutes after administration. DHM pretreatment could reverse GSH depletion and CYP2E1 overexpression, reduce the expression of ALT, AST, malondialdehyde, 4-HNE, TNF-α, and IL-1β, meanwhile it could reverse the abnormal expression of PI3K/AKT signaling pathway-related proteins which were induced by APAP. DHM pretreatment significantly reduced APAP-induced liver tissue apoptosis, necrosis, and inflammatory infiltration. Conclusion: DHM had a hepatoprotective effect on hepatotoxicity induced by APAP, which was shown by inhibiting oxidative stress and inflammatory responses, and reducing hepatocyte apoptosis by activating the PI3K/AKT signaling pathway.

Funder

Jilin Medical University Doctoral Foundation Project

Publisher

SAGE Publications

Subject

Complementary and alternative medicine,Plant Science,Drug Discovery,Pharmacology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3