Regulation of PI3k-WNK Pathway by Ethyl Acetate Partition Fraction of Gardenia jasminoides var. radicans Makino in SHR, NRK52e Cells, and IMCD3 Cells

Author:

Fu Yang1ORCID,Yuan Peipei1,Ke Yingying1,Cao Yangang1,Zhang Qi1,Hou Ying1,Wei Yaxin1,Gao Liyuan1,Zheng Xiaoke12,feng Weisheng12

Affiliation:

1. College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China

2. Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Zhengzhou, China

Abstract

The antihypertensive mechanism was studied of the ethyl acetate fraction of the ethanol extract (EAPF) of Gardenia jasminoides var. radicans Makino (GJRM). GJRM is a fake product of Gardenia jasminoides Ellis ( G. jasminoides), but in China’s Henan province, the production of GJRM is much more than G. jasminoides’s, but its traditional usage is as a dye. Gardenia jasminoides can be used to reduce blood pressure and blood glucose levels. The chemical compositions of GJRM and G. jasminoides are similar, and we previously confirmed that GJRM can also reduce blood pressure. Here, we report that the EAPF of GJRM could activate the phosphoinositide 3-kinases (PI3K) pathway in the kidneys of spontaneously hypertensive rats, thus increasing the content of nitric oxide and bradykinin in sera and decreasing endothelin-1 content. EAPF can also decrease the levels of with-no-lysine kinase 1 (WNK1) expression, WNK4 and oxidative stress-responsive kinase 1 messenger ribonucleic acid (mRNA), and Na-K-2Cl cotransporter and sodium chloride cotransporters mRNA and phosphorylation. To investigate the antihypertensive effects of the EAPF of GJRM, 5 monoterpenoids isolated from EAPF were studied for their effects on NRK52e and IMCD3 cells. These compounds inhibited the PI3K-WNK signaling pathway to varying degrees under hypotonic conditions; 4-methoxyrehmapicrogenin had the best effect.

Funder

National Key Research and Development Project

Publisher

SAGE Publications

Subject

Complementary and alternative medicine,Plant Science,Drug Discovery,Pharmacology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3