Mutagenesis of Lysines 156 and 159 in Human Immunodeficiency Virus Type 1 Integrase (IN) Reveals Differential Interactions between these Residues and Different IN Inhibitors

Author:

Crosby David C.1,Lei Xiangyang2,Gibbs Charles G.2,Reinecke Manfred G.2,Robinson W. Edward13

Affiliation:

1. Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697-4800, USA

2. Department of Chemistry, Texas Christian University, Fort Worth, TX 76129, USA

3. Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697-4800, USA

Abstract

Human immunodeficiency virus (HIV) type 1 integrase (IN) active site, and viral DNA-binding residues K156 and K159 are predicted to interact both with strand transfer-selective IN inhibitors (STI), e.g. L-731,988, Elvitegravir (EVG), and the FDA-approved IN inhibitor, Raltegravir (RGV), and strand transfer non-selective inhibitors, e.g. dicaffeoyltartaric acids (DCTAs), e.g. L-chicoric acid (L-CA). To test posited roles for these two lysine residues in inhibitor action we assayed the potency of L-CA and several STI against a panel of K156 and K159 mutants. Mutagenesis of K156 conferred resistance to L-CA and mutagenesis of either K156 or K159 conferred resistance to STI indicating that the cationic charge at these two viral DNA-binding residues is important for inhibitor potency. IN K156N, a reported polymorphism associated with resistance to RGV, conferred resistance to L-CA and STI as well. To investigate the apparent preference L-CA exhibits for interactions with K156, we assayed the potency of several hybrid inhibitors containing combinations of DCTA and STI pharmacophores against recombinant IN K156A or K159A. Although K156A conferred resistance to diketo acid-branched bis-catechol hybrid inhibitors, neither K156A nor K159A conferred resistance to their monocatechol counterparts, suggesting that bis-catechol moieties direct DCTAs toward K156. In contrast, STI were more promiscuous in their interaction with K156 and K159. Taken together, the results of this study indicate that DCTAs interact with IN in a manner different than that of STI and suggest that DCTAs are an attractive candidate chemotype for development into drugs potent against STI-resistant IN.

Publisher

SAGE Publications

Subject

Complementary and alternative medicine,Plant Science,Drug Discovery,Pharmacology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3