Resveratrol Protects Against Nicotine-Induced Apoptosis by Enhancing Autophagy in BEAS-2B Lung Epithelial Cells

Author:

He Li1ORCID,Tong Jin2ORCID

Affiliation:

1. Department of Critical Care Medicine, The Central Hospital of Dazhou, Dazhou, Sichuan, China

2. Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China

Abstract

Background: Nicotine (Nic), the major component of tobacco products, can induce apoptosis in lung epithelial cells, and the resulting damage contributes to chronic obstructive pulmonary disease. Apoptosis is closely related to autophagy. Resveratrol (Res) can induce autophagy and inhibit apoptosis. Therefore, the present study investigated whether Nic induces apoptosis of lung epithelial cells by regulating autophagy and the effect of Res on apoptosis of Nic-exposed lung epithelial cells. Methods: The BEAS-2B lung epithelial cell line was used to study the harmful effects of Nic and the potential benefits of Res as well as the underlying mechanisms. Viability and apoptosis were examined using the Cell Counting Kit-8 and annexin V-propidium iodide staining, respectively. The expression of levels of apoptosis-related proteins, autophagy-related proteins, and members of the PI3K/Akt/mTOR pathway was measured by western blotting. Autophagic flux was detected via mRFP-GFP-LC3 double-labeled adenovirus transfection and transmission electron microscopy. Results: Nic significantly reduce the viability and increased the apoptosis of BEAS-2B cells in a concentration-dependent manner. Nic treatment also increased the numbers of autophagosomes in BEAS-2B cells and upregulated LC3II and p62 expression. Moreover, Res at concentration of 2, 10, and 50 μM protected BEAS-2B cells from Nic apoptosis, and the expression of LC3II increased further and p62 decreased in Res pretreatment group. Apart from this, Res reduced Akt and mTOR phosphorylation. Subsequently, upon inhibiting PI3K phosphorylation by PI3K inhibitors, BEAS-2B cell autophagy induced by Res was obviously abolished. Conclusions: Nic-induced BEAS-2B cell apoptosis by inhibiting the late-stage autophagic flux, but Res could protect BEAS-2B cells from the detrimental effects of nicotine by enhancing autophagy via the PI3K/Akt/mTOR pathway. These results will provide an experimental basis for the prevention and treatment of COPD.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Complementary and alternative medicine,Plant Science,Drug Discovery,Pharmacology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3