Altitudinal Variation of Flavonoid Content in the Leaves of Fallopia japonica and the Needles of Larix kaempferi on Mt. Fuji

Author:

Murai Yoshinori12,Setoguchi Hiroaki3,Kitajima Junichi4,Iwashina Tsukasa1

Affiliation:

1. Department of Botany, National Museum of Nature and Science, Amakubo 4-1-1, Tsukuba, Ibaraki 305-0005, Japan

2. Department of Chemistry, Hiyoshi Campus, Keio University, Hiyoshi 4-1-1, Kohoku-ku, Yokohama 223-8521, Japan

3. Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan

4. Laboratory of Pharmacognosy, Showa Pharmaceutical University, Higashi-tamagawagakuen 4, Machida, Tokyo 194-8543, Japan

Abstract

Ultraviolet-B radiation is harmful to plants, and its intensity increases at altitude. So plants growing at high altitude possess UV protection systems. Flavonoid is known as a major UV protectant because it absorbs UV radiation and scavenges UV-induced free radicals in plant tissues. Japanese knotweed ( Fallopia japonica) and Japanese larch ( Larix kaempferi) grow at a wide range of altitudes on Mt. Fuji, the highest mountain in Japan, while the two plants harbor a homogeneous genetic structure. In the present study, a total of 14 flavonol 3- O-glycosides were isolated from both species. Furthermore, quantitative HPLC analyses revealed that flavonoid levels in the leaves of F. japonica and the needles of L. kaempferi increased with increasing altitude of their growing sites. The altitudinal trend of UV-absorbing antioxidants of herbal and woody plants was simultaneously revealed for the first time. These results suggest that both species have chemically acclimatized to high altitude regions, in which severe environmental conditions such as higher UV radiation exist.

Publisher

SAGE Publications

Subject

Complementary and alternative medicine,Plant Science,Drug Discovery,Pharmacology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3