Taraxasterol Inhibits Hepatic Gluconeogenesis and Increases Glycogen Synthesis via the PI3K/Akt Signaling Pathway

Author:

Zhao Mao1,Lu Mingxing1,Zeng Yongjiang1,He Shasha1,Feng Yuhan1,Yang Songqin1,Jang Wenwen1ORCID

Affiliation:

1. School of Pharmaceutical Sciences, Guizhou University, Guiyang, P.R. China

Abstract

Objective: Taraxasterol (TS) is the main active compound of Taraxacum, which plays a significant role in the treatment of diabetes in many classic prescriptions. However, the mechanisms of TS in the treatment of diabetes remain unclear. This study aimed to investigate the underlying mechanism of TS in hepatic gluconeogenesis and glycogen synthesis in HepG2 cells with insulin resistance (IR). Methods: Molecular docking was conducted by using Discovery Studio (DS) to predict the target of TS in the treatment of diabetes. Then we treated HepG2 cells with glucosamine for 18 h. After the cells were treated with TS, the glucose consumption was examined. Oil red O staining was used to detect the lipid accumulation of HepG2 cells, and cellular glucose uptake levels were assessed using fluorescent 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino)-2-deoxy-D-glucose. The expression of the related proteins of the PI3K/Akt signaling pathway in the HepG2 cells was evaluated by western blot assay. Results: The molecular docking analysis revealed a good binding pose between the insulin receptor and TS. Furthermore, TS administration significantly enhanced glucose uptake and consumption, and reduced lipid accumulation in HepG2 cells with IR. The results of pharmacological mechanism study showed that TS up-regulated glycogenesis by PI3K/Akt/GSK3-motivated GS activation, and down-regulated gluconeogenesis by PI3K/Akt/FoxO1 expression of PEPCK and G6Pase in HepG2 cells with IR. Conclusions: Molecular docking and in vitro experimental results indicate that TS suppresses hepatic gluconeogenesis and augments glycogen synthesis by the PI3K/Akt signaling pathway, and it may have similar effects as insulin in regulating blood glucose.

Funder

The Science and Technology Project of Guizhou Province of China

Publisher

SAGE Publications

Subject

Complementary and alternative medicine,Plant Science,Drug Discovery,Pharmacology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pharmacological Action and Research Progress of Taraxasterol;Current Pharmaceutical Biotechnology;2024-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3