Cry1−/− Circadian Rhythmicity Depends on SCN Intercellular Coupling

Author:

Evans Jennifer A.1,Pan Haiyun234,Liu Andrew C.5,Welsh David K.234

Affiliation:

1. Department of Psychology, University of California, San Diego, La Jolla, CA

2. Department of Psychiatry, University of California, San Diego, La Jolla, CA

3. Center for Chronobiology, University of California, San Diego, La Jolla, CA

4. Veterans Affairs San Diego Healthcare System, San Diego, CA

5. Department of Biological Sciences, University of Memphis, Memphis, TN

Abstract

In mammals, the suprachiasmatic nucleus (SCN) is the central pacemaker organizing circadian rhythms of behavior and physiology. At the cellular level, the mammalian clock consists of autoregulatory feedback loops involving a set of “clock genes,” including the Cryptochrome ( Cry) genes, Cry1 and Cry2. Experimental evidence suggests that Cry1 and Cry2 play distinct roles in circadian clock function. In mice, Cry1 is required for sustained circadian rhythms in dissociated SCN neurons or fibroblasts but not in organotypic SCN slices or at the behavioral level, whereas Cry2 is not required at any of these levels. It has been argued that coupling among SCN cellular oscillators compensates for clock gene defects to preserve oscillatory function. Here we test this hypothesis in Cry1−/− mice by first disrupting intercellular coupling in vivo using constant light (resulting in behavioral arrhythmicity) and then examining circadian clock gene expression in SCN slices at the single cell level. In this manner, we were able to test the role of intercellular coupling without drugs and while preserving tissue organization, avoiding the confounding influences of more invasive manipulations. Cry1−/− mice (as well as control Cry2−/− mice) bearing the PER2::LUC knock-in reporter were transferred from a standard light:dark cycle to constant bright light (~650 lux) to induce arrhythmic locomotor patterns. In SCN slices from these animals, we used bioluminescence imaging to monitor PER2::LUC expression in single cells. We show that SCN slices from rhythmic Cry1−/− and Cry2−/− mice had similarly high percentages of functional single-cell oscillators. In contrast, SCN slices from arrhythmic Cry1−/− mice had significantly fewer rhythmic cells than SCN slices from arrhythmic Cry2−/− mice. Thus, constant light in vivo disrupted intercellular SCN coupling to reveal a cell-autonomous circadian defect in Cry1−/− cells that is normally compensated by intercellular coupling in vivo.

Publisher

SAGE Publications

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3