Adult Emergence Rhythm of Fruit Flies Drosophila melanogaster under Seminatural Conditions

Author:

De Joydeep1,Varma Vishwanath1,Sharma Vijay Kumar1

Affiliation:

1. Chronobiology Laboratory, Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India

Abstract

In insects, the role of circadian clocks in the temporal regulation of adult emergence rhythm under natural conditions has not previously been reported. Here we present the results of a study aimed at examining the time course and waveform of emergence rhythm in the fruit fly Drosophila melanogaster under seminatural condition (SN). We studied this rhythm in wild-type and clock mutant flies under SN in parallel with laboratory condition (LAB) to examine (1) how the rhythm differs between SN and LAB, (2) what roles the circadian clock protein PERIOD and the circadian photoreceptor CRYPTOCHROME (CRY) play in the regulation of emergence rhythm under SN, and (3) whether there is seasonality in the rhythm. Under SN, wild-type flies displayed tightly gated emergence, peaking at “dawn” and gradually tapering down toward the evening, with little or no emergence by night, while in LAB, flies emerged throughout the light phase of light-dark (LD) cycles. The period loss-of-function mutant ( per 0) flies were arrhythmic in LAB but displayed weak rhythmic emergence under SN. Under SN, cry mutants displayed less robust rhythm with wider gates, greater variance in peak timing, and enhanced nighttime emergence compared to controls. Furthermore, flies showed seasonal variation in emergence rhythm, coupled either to light or to humidity/temperature depending on the severity of environmental conditions. These results suggest that adult emergence rhythm of Drosophila is more robust in nature, is coupled to environmental cycles, and shows seasonal variations.

Publisher

SAGE Publications

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3