Photoperiodic Induction of Diapause Requires Regulated Transcription oftimelessin the Larval Brain ofChymomyza costata

Author:

Stehlík J.1,Závodská R.2,Shimada K.3,Šauman I.1,Koštál V.4

Affiliation:

1. Institute of Entomology, Biology Centre AS CR, Ceske Budejovice, Czech Republic, Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic

2. Institute of Entomology, Biology Centre AS CR, Ceske Budejovice, Czech Republic, Pedagogical Faculty, University of South Bohemia, Ceske Budejovice, Czech Republic

3. Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan

4. Institute of Entomology, Biology Centre AS CR, Ceske Budejovice, Czech Republic, Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic,

Abstract

Photoperiodic signal stimulates induction of larval diapause in Chymomyza costata. Larvae of NPD strain ( npd-mutants) do not respond to photoperiod. Our previous results indicated that the locus npd could code for the timeless gene and its product might represent a molecular link between circadian and photoperiodic clock systems. Here we present results of tim mRNA (real time-PCR) and TIM protein (immunohistochemistry) analyses in the larval brain. TIM protein was localized in 2 neurons of each brain hemisphere of the 4-d-old 3rd instar wild-type larvae. In a marked contrast, no TIM neurons were detected in the brain of 4-day-old 3rd instar npd -mutant larvae and the level of tim transcripts was approximately 10-fold lower in the NPD than in the wild-type strain. Daily changes in tim expression and TIM presence appeared to be under photoperiodic control in the wild-type larvae. Clear daily oscillations of tim transcription were observed during the development of 3rd instars under the short-day conditions. Daily oscillations were less apparent under the long-day conditions, where a gradual increase of tim transcript abundance appeared as a prevailing trend. Analysis of the genomic structure of tim gene revealed that npd-mutants carry a 1855 bp-long deletion in the 5′-UTR region. This deletion removed the start of transcription and promoter regulatory motifs E-box and TER-box. The authors hypothesize that this mutation was responsible for dramatic reduction of tim transcription rates, disruption of circadian clock function, and disruption of photoperiodic calendar function in npd-mutant larvae of C. costata.

Publisher

SAGE Publications

Subject

Physiology (medical),Physiology

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3