Identification of a Preliminary Plasma Metabolome-based Biomarker for Circadian Phase in Humans

Author:

Cogswell D.1ORCID,Bisesi P.1,Markwald R. R.1,Cruickshank-Quinn C.2,Quinn K.2,McHill A.13,Melanson E. L.456,Reisdorph N.2,Wright K. P.14,Depner C. M.17ORCID

Affiliation:

1. Sleep and Chronobiology Laboratory, University of Colorado, Boulder, Boulder, Colorado

2. Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado

3. Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon

4. Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado

5. Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado

6. Eastern Colorado Veterans Affairs Geriatric Research, Education, and Clinical Center, Denver, Colorado

7. Department of Health and Kinesiology, The University of Utah, Salt Lake City, Utah

Abstract

Measuring individual circadian phase is important to diagnose and treat circadian rhythm sleep-wake disorders and circadian misalignment, inform chronotherapy, and advance circadian science. Initial findings using blood transcriptomics to predict the circadian phase marker dim-light melatonin onset (DLMO) show promise. Alternatively, there are limited attempts using metabolomics to predict DLMO and no known omics-based biomarkers predict dim-light melatonin offset (DLMOff). We analyzed the human plasma metabolome during adequate and insufficient sleep to predict DLMO and DLMOff using one blood sample. Sixteen (8 male/8 female) healthy participants aged 22.4 ± 4.8 years (mean ± SD) completed an in-laboratory study with 3 baseline days (9 h sleep opportunity/night), followed by a randomized cross-over protocol with 9-h adequate sleep and 5-h insufficient sleep conditions, each lasting 5 days. Blood was collected hourly during the final 24 h of each condition to independently determine DLMO and DLMOff. Blood samples collected every 4 h were analyzed by untargeted metabolomics and were randomly split into training (68%) and test (32%) sets for biomarker analyses. DLMO and DLMOff biomarker models were developed using partial least squares regression in the training set followed by performance assessments using the test set. At baseline, the DLMOff model showed the highest performance (0.91 R2 and 1.1 ± 1.1 h median absolute error ± interquartile range [MdAE ± IQR]), with significantly ( p < 0.01) lower prediction error versus the DLMO model. When all conditions (baseline, 9 h, and 5 h) were included in performance analyses, the DLMO (0.60 R2; 2.2 ± 2.8 h MdAE; 44% of the samples with an error under 2 h) and DLMOff (0.62 R2; 1.8 ± 2.6 h MdAE; 51% of the samples with an error under 2 h) models were not statistically different. These findings show promise for metabolomics-based biomarkers of circadian phase and highlight the need to test biomarkers that predict multiple circadian phase markers under different physiological conditions.

Funder

National Center for Advancing Translational Sciences

National Heart, Lung, and Blood Institute

National Institute of Diabetes and Digestive and Kidney Diseases

Sleep Research Society Foundation

Publisher

SAGE Publications

Subject

Physiology (medical),Physiology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3