Circadian Physiology Is a Toxicity Target of the Anticancer Drug Gemcitabine in Mice

Author:

Li X.M.1,Lévi F.2

Affiliation:

1. INSERM, U776 “Rythmes biologiques et cancers, " 94800 Villejuif, France, Univ Paris-Sud,

2. INSERM, U776 “Rythmes biologiques et cancers, " 94800 Villejuif, France, Univ Paris-Sud

Abstract

The circadian timing system determines the optimal timing and waveform of drug tolerability, yet treatment itself can alter this system. Gemcitabine is an antimetabolite agent that is active against lung and pancreatic cancers. Tolerability for this drug is best following dosing at ZT 11 in mice. The authors investigated the effects of gemcitabine on the circadian rhythms in body temperature and rest activity as physiological markers of the circadian timing system. Healthy unrestrained B6D2F1 mice implanted with radiotelemetry transmitters were kept in LD 12:12 prior to receiving a single intravenous dose of gemcitabine (200, 400, or 600 mg/kg) at ZT 11 or 23. Gemcitabine (400 mg/kg) transiently suppressed the body temperature rhythm in 50% of the mice dosed at ZT 23, as compared to none of the mice treated at ZT 11 within the 2 days following drug dosing (Fisher 's exact test p = 0.04). The rest-activity circadian rhythm was suppressed in 40% (ZT 11) and 50% (ZT 23) of the mice, respectively. In the mice with persistent circadian rhythms, gemcitabine delivery at ZT 23 resulted in more prominent decreases and slower recovery of circadian mesor and amplitude of both rhythms as compared to mice treated at ZT 11. Gemcitabine also induced a transient internal desynchronization between temperature and activity rhythms following dosing at ZT 23 but not at ZT 11. The delivery of a single therapeutic dose of gemcitabine near its time of least toxicity produced least alterations in circadian physiological outputs, a finding that suggests that the extent of circadian disruption contributes to toxicokinetic processes.

Publisher

SAGE Publications

Subject

Physiology (medical),Physiology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3