Effects of Photoperiod on Rat Motor Activity Rhythm at the Lower Limit of Entrainment

Author:

Cambras Trinitat1,Chiesa Juan2,Araujo John3,Díez-Noguera Antoni2

Affiliation:

1. Departament de Fisiologia, Facultat de Farmacia, Universitat de Barcelona,

2. Departament de Fisiologia, Facultat de Farmacia, Universitat de Barcelona

3. Departamento de Fisiologia, Universidade federal do Rio Grande do Norte, Natal-RN, Brazil

Abstract

The experiment described here studied the rat motor activity pattern as a function of the photoperiod of circadian light-dark cycles in the limits of entrainment (22-and 23-h periods). In most cases, the overt rhythm showed 2 circadian components: 1 that followed the external LD cycle and a 2nd rhythm that was free run. The expression of these components was directly dependent on the photoperiod, and there was a gradual transition in the manifestation of 1 or the other. The component with a period equal to that of the external cycle was more manifested under long photoperiods, while the other 1 was more expressed during short photoperiods. Also, the period of the free-running component was longer under T22 than T23. For each period, the free-running component was longer under a longer photoperiod. At first sight, the presence of these 2 components in most of the rats might appear to be due to the fact that in the limits of entrainment, some rats do not entrain and thus show a free-running rhythm plus masking. However, the gradation observed in the different patterns of the overt motor activity rhythm, especially those patterns related to the different balance between the 2 components and the length of the period of the free-running component under LD as a function of the photoperiod, suggests that the circadian system can be functionally dissociated.

Publisher

SAGE Publications

Subject

Physiology (medical),Physiology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3