Binocular Interactions in the Entrainment and Phase Shifting of Locomotor Activity Rhythms in Syrian Hamsters

Author:

Park Jin Ho1,Paul Matthew J.2,Butler Matthew P.3,Zucker Irving4

Affiliation:

1. 3210 Tolman Hall, Department of Psychology, University of California, Berkeley, CA 94720-1650;.

2. Departments of Psychology, University of California, Berkeley, CA 94720

3. Departments Integrative Biology, University of California, Berkeley, CA 94720

4. Departments Psychology and Integrative Biology, University of California, Berkeley, CA 94720

Abstract

To assess binocular interactions and possible ocular dominance in entrainment of circadian rhythms, Syrian hamsters maintained in LL were subjected for several weeks to schedules of eye occlusion with opaque contact lenses. In separate groups, the opaque lens was inserted into the left or right eye for 12 h at the same clock time each day. The left and right eyes of other groups were alternately occluded for 12 h each day, with initial occlusion of either the left or right eye for different groups. Amajority of hamsters entrained their locomotor activity rhythm when 1 eye was occluded for 12 h. The modified visual input imposed by covering 1 eye is sufficient to induce entrainment. Locomotor rhythms of most animals in which the 2 eyes were alternately occluded for 12 h each day phasedelayed onset of activity during the 1st few days of the lensing procedure; activity onset then free ran with • < 24 h for several weeks until entraining with • of 24 h regardless of whether the left or right eye was initially occluded. Entrainment eventually occurred when activity onset coincided with occlusion of the eye contralateral to the one that was first lensed. Photic and nonphotic explanations for eventual entrainment of locomotor rhythms are discussed, and evidence for asymmetrical photic input from the 2 eyes to the SCN is considered

Publisher

SAGE Publications

Subject

Physiology (medical),Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3