The 2004 Aschoff/Pittendrigh Lecture: Theory of the Origin of the Pineal Gland— A Tale of Conflict and Resolution

Author:

Klein David C.1

Affiliation:

1. Section on Neuroendocrinology, Laboratory of Developmental Neurobiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland

Abstract

A theory is presented that explains the evolution of the pinealocyte from the common ancestral photoreceptor of both the pinealocyte and retinal photoreceptor. Central to the hypothesis is the previously unrecognized conflict between the two chemistries that define these cells—melatonin synthesis and retinoid recycling. At the core of the conflict is the formation of adducts composed of two molecules of retinaldehyde and one molecule of serotonin, analogous to formation in the retina of the toxic bis-retinyl ethanolamine (A2E). The hypothesis argues that early in chordate evolution, at a point before the genes required for melatonin synthesis were acquired, retinaldehyde—which is essential for photon capture—was depleted by reacting with naturally occurring arylalkylamines (tyramine, serotonin, tryptamine, phenylethylamine) and xenobiotic arylalkylamines. This generated toxic bis-retinyl arylalkylamines (A2AAs). The acquisition of arylalkylamine N-acetyltransferase (AANAT) prevented this by N-acetylating the arylalkylamines. HydroxyindoleOmethyltransferase enhanced detoxification in the primitive photoreceptor by increasing the lipid solubility of serotonin and bis-retinyl serotonin. After the serotonin. melatonin pathway was established, the next step leading toward the pinealocyte was the evolution of a daily rhythm in melatonin and the capacity to recognize it as a signal of darkness. The shift in melatonin from metabolic garbage to information developed a pressure to improve the reliability of the melatonin signal, which in turn led to higher levels of serotonin in the photodetector. This generated the conflict between serotonin and retinaldehyde, which was resolved by the cellular segregation of the two chemistries. The result, in primates, is a pineal gland that does not detect light and a retinal photodetector that does not make melatonin. High levels of AANAT in the latter tissue might serve the same function AANAT had when first acquired— prevention of A2AA formation.

Publisher

SAGE Publications

Subject

Physiology (medical),Physiology

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3