Multiple Melatonin Target Tissues Mediate Termination of Photorefractoriness by Long Day Lengths in Siberian Hamsters

Author:

Teubner Brett J. W.1,Smith Carlesia D.1,Freeman David A.2

Affiliation:

1. Department of Biology, University of Memphis, Memphis, TN 38152-3540

2. Department of Biology, University of Memphis, Memphis, TN 38152-3540,

Abstract

The development of refractoriness to the short-day melatonin rhythm in mid-winter triggers recrudescence of the photoinhibited reproductive system of many rodents. As a result, over-wintering animals attain reproductive competence prior to the onset of spring conditions that favor successful reproduction. While in the photorefractory state, hamsters are insensitive to short day lengths and the associated long-duration melatonin rhythm. Prior to regaining sensitivity to short day length inhibition of reproduction, hamsters must first be exposed to 10 to 12 weeks of long, summer-like day lengths and the associated short-duration melatonin rhythm. The neural melatonin target tissues that mediate the breaking of photorefractoriness by long day lengths have not been identified. Long day length information is thought to be communicated to the reproductive axis through the actions of melatonin at the reuniens nucleus of the thalamus (NRe) and the SCN of the hypothalamus. The authors report that the SCN and the NRe also participate in the breaking of reproductive photorefractoriness by long day lengths. Micro-implants of melatonin that were left in place for 12 weeks during exposure to long day lengths and that act locally on these brain nuclei to obscure the endogenous melatonin rhythm, and thus ambient day length information, blocked the breaking of refractoriness. Identical melatonin implants located in another melatonin target tissue, the paraventricular nucleus of the thalamus, did not interfere with the breaking of reproductive refractoriness. By contrast, breaking of refractoriness of the seasonal body mass response did not follow the pattern exhibited by the reproductive response. The results suggest that these melatonin target tissues serve distinct but overlapping roles in the photoperiodic mechanism.

Publisher

SAGE Publications

Subject

Physiology (medical),Physiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3