Comparing Methods for Measurement Error Detection in Serial 24-h Hormonal Data

Author:

van der Spoel Evie1ORCID,Choi Jungyeon2,Roelfsema Ferdinand3,Cessie Saskia le24,van Heemst Diana1,Dekkers Olaf M.23

Affiliation:

1. Section Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands

2. Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands

3. Section Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands

4. Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands

Abstract

Measurement errors commonly occur in 24-h hormonal data and may affect the outcomes of such studies. Measurement errors often appear as outliers in such data sets; however, no well-established method is available for their automatic detection. In this study, we aimed to compare performances of different methods for outlier detection in hormonal serial data. Hormones (glucose, insulin, thyroid-stimulating hormone, cortisol, and growth hormone) were measured in blood sampled every 10 min for 24 h in 38 participants of the Leiden Longevity Study. Four methods for detecting outliers were compared: (1) eyeballing, (2) Tukey’s fences, (3) stepwise approach, and (4) the expectation-maximization (EM) algorithm. Eyeballing detects outliers based on experts’ knowledge, and the stepwise approach incorporates physiological knowledge with a statistical algorithm. Tukey’s fences and the EM algorithm are data-driven methods, using interquartile range and a mathematical algorithm to identify the underlying distribution, respectively. The performance of the methods was evaluated based on the number of outliers detected and the change in statistical outcomes after removing detected outliers. Eyeballing resulted in the lowest number of outliers detected (1.0% of all data points), followed by Tukey’s fences (2.3%), the stepwise approach (2.7%), and the EM algorithm (11.0%). In all methods, the mean hormone levels did not change materially after removing outliers. However, their minima were affected by outlier removal. Although removing outliers affected the correlation between glucose and insulin on the individual level, when averaged over all participants, none of the 4 methods influenced the correlation. Based on our results, the EM algorithm is not recommended given the high number of outliers detected, even where data points are physiologically plausible. Since Tukey’s fences is not suitable for all types of data and eyeballing is time-consuming, we recommend the stepwise approach for outlier detection, which combines physiological knowledge and an automated process.

Publisher

SAGE Publications

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3