Decline of the Presynaptic Network, Including GABAergic Terminals, in the Aging Suprachiasmatic Nucleus of the Mouse

Author:

Palomba Maria1,Nygård Mikael2,Florenzano Fulvio3,Bertini Giuseppe1,Kristensson Krister2,Bentivoglio Marina4

Affiliation:

1. Department of Morphological and Biomedical Sciences, University of Verona, Italy

2. Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden

3. IRCCS Santa Lucia Foundation, Rome, Italy

4. Department of Morphological and Biomedical Sciences, University of Verona, Italy,

Abstract

Biological rhythms, and especially the sleep/wake cycle, are frequently disrupted during senescence. This draws attention to the study of aging-related changes in the hypothalamic suprachiasmatic nucleus (SCN), the master circadian pacemaker. The authors here compared the SCN of young and old mice, analyzing presynaptic terminals, including the gamma-aminobutyric acid (GABA)ergic network, and molecules related to the regulation of GABA, the main neurotransmitter of SCN neurons. Transcripts of the α3 subunit of the GABAA receptor and the GABA-synthesizing enzyme glutamic acid decarboxylase isoform 67 (GAD67) were analyzed with real-time RT-PCR and GAD67 protein with Western blotting. These parameters did not show significant changes between the 2 age groups. Presynaptic terminals were identified in confocal microscopy with synaptophysin immunofluorescence, and the GABAergic subset of those terminals was revealed by the colocalization of GAD67 and synaptophysin. Quantitative analysis of labeled synaptic endings performed in 2 SCN subregions, where retinal afferents are known to be, respectively, very dense or very sparse, revealed marked aging-related changes. In both subregions, the evaluated parameters (the number of and the area covered by presynaptic terminals and by their GABAergic subset) were significantly decreased in old versus young mice. No significant differences were found between SCN tissue samples from animals sacrificed at different times of day, in either age group. Altogether, the data point out marked reduction in the synaptic network of the aging biological clock, which also affects GABAergic terminals. Such alterations could underlie aging-related SCN dysfunction, including low-amplitude output during senescence.

Publisher

SAGE Publications

Subject

Physiology (medical),Physiology

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3