Absence of Apparent Circadian Rhythms of Gonadotropins and Free α-Subunit in Postmenopausal Women: Evidence for Distinct Regulation Relative to Other Hormonal Rhythms

Author:

Lavoie Helene B.1,Marsh Erica E.2,Hall Janet E.3

Affiliation:

1. PROCREA Cliniques, 1361 Beaumont Avenue, Suite 301, Town of Mount-Royal, Quebec, H3P 2H7, Canada

2. Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA

3. Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA,

Abstract

Aging is associated with a decrease in gonadotropin levels in postmenopausal women (PMW) and is also associated with alterations in a number of circadian rhythms. The goals of this study were to determine the presence of circadian rhythms of gonadotropins and glycoprotein free α-subunit (FAS) in young and old PMW. Healthy, euthyroid PMW, ages 45 to 55 years ( n = 11) and 70 to 80 years ( n = 11), were admitted in the morning to start a 24-h constant routine of light, temperature, position, and activity. Subjects remained awake and semirecumbent for the duration of the study and were fed hourly snacks, and activity was monitored continuously. Blood was sampled every 5 min for two 8-h periods corresponding to the estimated acrophase and nadir of the temperature rhythm. Luteinizing hormone (LH) and FAS were measured in all samples and follicle-stimulating hormone (FSH), thyroid-stimulating hormone (TSH), and cortisol in 20-min serum pools. Mean LH ( p < 0.001), FSH ( p < 0.002), and FAS ( p < 0.002) were lower in older compared with younger PMW. Day/night differences in cortisol and TSH ( p < 0.001) were present in all subjects. However, there were no day/night differences in LH in younger or older PMW or in FSH in younger or older PMW. There were no day/night differences in mean FAS in younger or older PMW or in FAS pulse frequency or amplitude. Thus, in controlled studies in which differences in cortisol and TSH were demonstrated, there were no day/night differences in LH, FSH, or FAS in PMW. These studies suggest that despite evidence of intact circadian rhythms of cortisol and TSH, gonadotropin secretion does not appear to follow a circadian pattern in PMW. Thus, the age-related decline in gonadotropin secretion in PMW is not associated with a dampening of circadian rhythmicity. The absence of day/night differences in FAS suggests that GnRH plays a more prominent role in FAS regulation than does thyrotropin-releasing hormone in PMW.

Publisher

SAGE Publications

Subject

Physiology (medical),Physiology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3