Scheduled Food Hastens Re-Entrainment More Than Melatonin Does after a 6-h Phase Advance of the Light-Dark Cycle in Rats

Author:

Ángeles-Castellanos M.1,Amaya J. M.1,Salgado-Delgado R.2,Buijs R. M.2,Escobar C.1

Affiliation:

1. Departamento de Anatomía, Fac de Medicina

2. Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México DF, México

Abstract

Circadian desynchrony occurs when individuals are exposed to abrupt phase shifts of the light-dark cycle, as in jet lag. For reducing symptoms and for speeding up resynchronization, several strategies have been suggested, including scheduled exercise, exposure to bright light, drugs, and especially exogenous melatonin administration. Restricted feeding schedules have shown to be powerful entraining signals for metabolic and hormonal daily cycles, as well as for clock genes in tissues and organs of the periphery. This study explored in a rat model of jet lag the contribution of exogenous melatonin or scheduled feeding on the re-entrainment speed of spontaneous general activity and core temperature after a 6-h phase advance of the light-dark cycle. In a first phase, the treatment was scheduled for 5 days prior to the phase shift, while in a second stage, the treatment was simultaneous with the phase advance of the light-dark cycle. Melatonin administration and especially scheduled feeding simultaneous with the phase shift improved significantly the re-entrainment speed. The evaluation of the free-running activity and temperature following the 5-day treatment proved that both exogenous melatonin and specially scheduled feeding accelerated re-entrainment of the SCN-driven general activity and core temperature, respectively, with 7, 5 days ( p < 0.01) and 3, 3 days ( p < 0.001). The present results show the relevance of feeding schedules as entraining signals for the circadian system and highlight the importance of using them as a strategy for preventing internal desynchrony.

Publisher

SAGE Publications

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3