Quantifying Human Circadian Pacemaker Response to Brief, Extended, and Repeated Light Stimuli over the Phototopic Range

Author:

Kronauer Richard E.1,Forger Daniel B.2,Jewett Megan E.3

Affiliation:

1. Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138; Circadian, Neuroendocrine and Sleep Disorders Section, Division of Endocrinology, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115

2. Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138

3. Circadian, Neuroendocrine and Sleep Disorders Section, Division of Endocrinology, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115

Abstract

The authors' previous models have been able to describe accurately the effects of extended (5 h) bright-light (>4000 lux) stimuli on the phase and amplitude of the human circadian pacemaker, but they are not sufficient to represent the surprising human sensitivity to both brief pulses of bright light and light of more moderate intensities. Therefore, the authors have devised a new model in which a dynamic stimulus processor ( Process L) intervenes between the light stimuli and the traditional representation of the circadian pacemaker as a self-sustaining limit-cycle oscillator ( Process P). The overall model incorporating Process L and Process P is intended to allow the prediction of phase shifts to photic stimuli of any temporal pattern (extended and brief light episodes) and any light intensity in the photopic range. Two time constants emerge in the Process Lmodel: the characteristic duration for necessary bright-light pulses to achieve their full effect (5-10 min) and the characteristic stimulus-free (dark) interval that can be tolerated without incurring an excessive penalty in phase shifting (30-80 min). The effect of reducing light intensity is incorporated in Process L as an extension of the time necessary for the light pulse to be fully realized (a power-law relation between time and intensity). This new model generates a number of new testable hypotheses, including the surprising prediction that 24-h cycles consisting of8hof darkness and 16 h of only 3.5 lux would be capable of entraining a large fraction of the adult population (45%). Experimental data on the response of the human circadian system to lower light intensities and briefer stimuli are needed to allow for further refinement and validation of the model proposed here.

Publisher

SAGE Publications

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3