Strong (Type 0) Phase Resetting of Activity-Rest Rhythm in Fruit Flies, Drosophila Melanogaster, at Low Temperature

Author:

Varma Vishwanath1,Mukherjee Narendra1,Kannan Nisha N.1,Sharma Vijay Kumar1

Affiliation:

1. Chronobiology Laboratory, Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India

Abstract

Amplitude modulation in limit cycle models of circadian clocks has been previously formulated to explain the phenomenon of temperature compensation. These models propose that invariance of clock period (τ) with changing temperature is a result of the system traversing small or large limit cycles such that despite a decrease or an increase in the linear velocity of the clock owing to slowing down or speeding up of the underlying biochemical reactions, respectively, the angular velocity and, thus, the clock period remain constant. In addition, these models predict that phase resetting behavior of circadian clocks described by limit cycles of different amplitudes at low or high temperatures will be drastically different. More specifically, this class of models predicts that at low temperatures, circadian clocks will respond to perturbations by eliciting larger phase shifts by virtue of their smaller amplitude and vice versa. Here, we present the results of our tests of this prediction: We examined the nature of photic phase response curves (PRCs) and phase transition curves (PTCs) for the circadian clocks of 4 wild-type fruit fly Drosophila melanogaster populations at 3 different ambient temperatures (18, 25, and 29 °C). Interestingly, we observed that at the low temperature of 18 °C, fly clocks respond to light perturbations more strongly, eliciting strong (type 0) PRCs and PTCs, while at moderate (25 °C) and high (29 °C) temperatures the same stimuli evoke weak (type 1) responses. This pattern of strong and weak phase resetting at low and high temperatures, respectively, renders support for the limit cycle amplitude modulation model for temperature compensation of circadian clocks.

Publisher

SAGE Publications

Subject

Physiology (medical),Physiology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3