A Kinetic Study of the Effects of Light on Circadian Rhythmicity of the frq Promoter of Neurospora crassa

Author:

Gooch Van D.1,Johnson Alicia E.1,Bourne Brian J.1,Nix Bradley T.1,Maas Jonna A.1,Fox Julie A.1,Loros Jennifer J.2,Larrondo Luis F.3,Dunlap Jay C.4

Affiliation:

1. Division of Science and Mathematics, University of Minnesota–Morris, Morris, MN, USA

2. Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH, USA

3. Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile

4. Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA

Abstract

The role of the frq gene in the Neurospora crassa circadian rhythm has been widely studied, but technical limitations have hindered a thorough analysis of frq circadian expression waveform. Through our experiments, we have shown an improved precision in defining Neurospora’s circadian rhythm kinetics using a codon optimized firefly luciferase gene reporter linked to a frq promoter. In vivo examination of this real-time reporter has allowed for a better understanding of the relationship of the light responsive elements of the frq promoter to its circadian feedback components. We provide a detailed phase response curve showing the phase shifts induced by a light pulse applied at different points of the circadian cycle. Using the frq-luc reporter, we have found that a 12-h light:12-h dark cycle (12L:12D) results in a luciferase expression waveform that is more complex and higher in amplitude than that seen in free-running conditions of constant darkness (DD). When using a lighting regime more consistent with solar timing, rather than a square wave pattern, one observes a circadian waveform that is smoother, lower in amplitude, and different in phasing. Using dim light in place of darkness in these experiments also affects the resulting waveform and phasing. Our experiments illustrate Neurospora’s circadian kinetics in greater detail than previous methods, providing further insight into the complex underlying biochemical, genetic, and physiological mechanisms underpinning the circadian oscillator.

Publisher

SAGE Publications

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3