Correlation with Behavioral Activity and Rest Implies Circadian Regulation by SCN Neuronal Activity Levels

Author:

Houben Thijs1,Deboer Tom1,van Oosterhout Floor1,Meijer Johanna H.2

Affiliation:

1. Department of Molecular Cell Biology, Laboratory for Neurophysiology, Leiden University Medical Centre, Leiden, the Netherlands

2. Department of Molecular Cell Biology, Laboratory for Neurophysiology, Leiden University Medical Centre, Leiden, the Netherlands,

Abstract

The SCN of the hypothalamus contains a major pacemaker, which exhibits 24-h rhythms in electrical impulse frequency. Although it is known that SCN electrical activity is high during the day and low during the night, the precise relationship between electrical activity and behavioral rhythms is almost entirely unknown. The authors performed long-term recordings of SCN multiple unit activity with the aid of implanted microelectrodes in parallel with the drinking activity in freely moving mice. The animals were kept in a 12h:12h light-dark cycle (LD 12:12) and in short-day (LD 8:16) and long-day photoperiods (LD 16:8). Onsets and offsets of behavioral activity occurred when SCN discharge was around half-maximum value. Of the onsets 80%, and of the offsets 62%, occurred when SCN electrical activity differed less than 15% from the half-maximum electrical activity levels. Transitions between rest and activity could be described by a sigmoid shaped probability curve with Hill coefficients of 7.0 for onsets and 5.7 for offsets. The similarity in the onset and offset levels shows an absence of hysteresis in the control of behavioral activity by the SCN. Exposure to short- or long-day photoperiods induced significant alterations in the waveform of electrical activity but did not affect SCN electrical activity levels at which behavioral transitions occurred. In all photoperiods, the SCN signal was skewed with more rapid discharge changes during onsets (19% per hour) than offsets (11% per hour). The precision of the circadian system appears optimized, as transitions between behavioral activity and rest occur when the change in SCN electrical activity is maximal, both during the declining and rising phase. The authors conclude that transitions in behavioral state can be described by a probability function around half-maximum electrical activity levels and that the parameters of the SCN, predicting onset and offset of behavior, are remarkably insensitive to environmental conditions.

Publisher

SAGE Publications

Subject

Physiology (medical),Physiology

Reference56 articles.

1. Lesions of suprachiasmatic nucleus efferents selectively affect rest-activity rhythm

2. Exogenous and Endogenous Components in Circadian Rhythms

3. Aschoff J., Gerecke E., Kureck A., Pohl H., Rieger P., Von Saint Paul U., and Wever R. ( 1971) Interdependent parameters of circadian activity rhythms in birds and man. In Biochronometry , M Menaker, ed, pp 3-29, Washington, DC, National Academy of Sciences.

4. A novel suction electrode recording technique for monitoring circadian rhythms in single and multiunit discharge from brain slices

5. Spatiotemporal Heterogeneity in the Electrical Activity of Suprachiasmatic Nuclei Neurons and their Response to Photoperiod

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3