The Effects of Anterior Hypothalamic Lesions on Short-Day Responses in Siberian Hamsters Given Timed Melatonin Infusions

Author:

Song C. Kay1,Bartness Timothy J.2

Affiliation:

1. Department of Biology, Department of Neurobiology Program

2. Department of Biology, Department of Psychology, Department of Neurobiology Program,, Department of Neuropsychology & Behavioral Neuroscience Program, Georgia State University, Atlanta, GA 30303

Abstract

The suprachiasmatic nucleus (SCN) of the hypothalamus is an area of dense 2-[125I]Iodomelatonin binding in Siberian hamsters (Phodopus sungorus sungorus) that is suggestive of a possible role in the reception and/or relaying of melatonin (MEL) signals. Indeed, in pinealectomized male Siberian hamsters given short day (SD) MEL signals (long-duration MEL infusions), lesions of the SCN (SCNx) block testicular regression and decreases in body and fat pad masses seen in identically treated hamsters with sham lesions (SCNs). In similar studies using Syrian hamsters ( Mesocricetus auratus), anterior hypothalamic lesions (AHx), but not SCNx, blocked SD MEL signal-induced gonadal regression despite the similarity in the 2-[125I]Iodomelatonin binding pattern between the two species. The discrepancy between the ability of SCNx to block the reception of SD MEL signals between the two species is puzzling, given the similarity in the reproductive status of the Syrian and Siberian hamsters to systemically administered and timed MEL infusions. One possible way of reconciling the differences between these studies was that ancillary damage to areas neighboring the SCN, including the AH, may have occurred in our attempt to achieve complete SCNx in Siberian hamsters. Therefore, the purpose of the present study was to challenge AHx Siberian hamsters with SD MEL signals. Adult male hamsters were pinealectomized, fitted with subcutaneous catheters, and given daily timed infusions of MEL for 5 or 10 h (long day-like and short day-like, respectively) or the saline vehicle for 6 wk following bilateral electrolytic, or sham (AHs) lesions of the AH. Hamsters receiving 10 h MEL infusions that lacked evidence of anatomical or functional damage to the SCN showed SD-like gonadal regression, decreases in body and fat pad mass, and food intake similar to that observed in AHs animals. In contrast, 10 h MEL-infused SCNx hamsters did not exhibit SD-like responses, a finding confirming our previous report. These data suggest that interspecies differences exist between Syrian and Siberian hamsters in central nervous system sites and pathways involved in the reception/transmission of SD MEL signals.

Publisher

SAGE Publications

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3