The Use of a Reversible Transcription Inhibitor, DRB, to Investigate the Involvement of Specific Proteins in the Ocular Circadian System of Aplysia

Author:

Koumenis Constantinos1,Tran Quang1,Eskin Arnold1

Affiliation:

1. Department of Biochemical & Biophysical Sciences, University of Houston, Houston, TX 77204,

Abstract

Previously, the effects of 2-h treatments with the reversible transcription inhibitor 5,6-dichloro-1-β-D-ribobenzimidazole (DRB) on the phase of the circadian rhythm in the eye of Aplysia californica were studied. Here we report a study of the effects of DRB on protein synthesis and a more detailed investigation of the effects of DRB on the phase of the circadian rhythm. Treatments of DRB for 30 min reduced the rate of transcription to about 30% of control values, and this inhibition reversed completely within 2 h after the end of the treatment. A phase-response curve was obtained for 30-min treatments of DRB. Shorter (30 min) treatments with DRB produced phase shifts comparable to those produced by treatments with DRB for 2 h. The phase-response curve obtained using 30-min treatments of DRB was similar to one obtained using 2-h treatments with respect to the phase at which DRB exerts its maximum effect on the rhythm (around circadian time [CT] 6). However, some aspects of the two phase-response curves were different. The effect of DRB on the phase of the rhythm appeared rapidly after removal of DRB treatments given during CT 22-6, but the effects of DRB on the phase of the rhythm appeared more slowly (∼10 h) after the treatments given during CT 6-12. Because the effects of DRB on the phase of the overt rhythm appear to be rapid at a particular phase, it is very likely that DRB affects the phase of the rhythm by altering the synthesis of proteins during or shortly after the treatment. Thus we searched for proteins whose synthesis was altered by DRB. Incorporation of labeled amino acids into 2 proteins was found to be altered during the DRB treatment, whereas 15 proteins were affected after the DRB treatment. Among the proteins affected during or shortly after the DRB treatment were four previously identified proteins affected by other treatments that can shift the phase of the eye circadian rhythm. These four proteins are worthy of further study as possible candidates for components of the circadian oscillator.

Publisher

SAGE Publications

Subject

Physiology (medical),Physiology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3