Chronotype Influences Diurnal Variations in the Excitability of the Human Motor Cortex and the Ability to Generate Torque during a Maximum Voluntary Contraction

Author:

Tamm Alexander S.1,Lagerquist Olle1,Ley Alejandro L.1,Collins David F.2

Affiliation:

1. Human Neurophysiology Laboratory, Faculty of Physical Education and Recreation, Centre for Neuroscience, 6-40 General Services Building, University of Alberta, Edmonton, AB, Canada

2. Human Neurophysiology Laboratory, Faculty of Physical Education and Recreation, Centre for Neuroscience, 6-40 General Services Building, University of Alberta, Edmonton, AB, Canada,

Abstract

The ability to generate torque during a maximum voluntary contraction (MVC) changes over the day. The present experiments were designed to determine the influence of an individual's chronotype on this diurnal rhythm and on cortical, spinal, and peripheral mechanisms that may be related to torque production. After completing a questionnaire to determine chronotype, 18 subjects (9 morning people, 9 evening people) participated in 4 data collection sessions (at 09:00, 13:00, 17:00, and 21:00) over 1 day. We used magnetic stimulation of the cortex, electrical stimulation of the tibial nerve, electromyographic (EMG) recordings of muscle activity, and isometric torque measurements to evaluate the excitability of the motor cortex, the spinal cord, and the torque-generating capacity of the triceps surae (TS) muscles. We found that for morning people, cortical excitability was highest at 09:00, spinal excitability was highest at 21:00, and there were no significant differences in TS EMG or torque produced during MVCs over the day. In contrast, evening people showed parallel increases in cortical and spinal excitability over the day, and these were associated with increased TS EMG and MVC torque. There were no differences at the level of the muscle over the day between morning and evening people. We propose that the simultaneous increases in cortical and spinal excitability increased central nervous system drive to the muscles of evening people, thus increasing torque production over the day. These differences in cortical excitability and performance of a motor task between morning and evening people have implications for maximizing human performance and highlight the influence of chronotype on an individual's diurnal rhythms.

Publisher

SAGE Publications

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3