Functional Pre- and Postsynaptic Changes between the Retinohypothalamic Tract and Suprachiasmatic Nucleus during Rat Postnatal Development

Author:

Reyes-Mendez Miriam E.1,Osuna-López Fernando1,Herrera-Zamora J. Manuel1,Navarro-Polanco Ricardo A.1,Moreno-Galindo Eloy G.1,Alamilla Javier12ORCID

Affiliation:

1. Centro Universitario de Investigaciones Biomédicas “CUIB,” Universidad de Colima, Colima, Col, Mexico

2. Consejo Nacional de Ciencia y Tecnología (CONACYT), Universidad de Colima, Colima, Col, Mexico

Abstract

The suprachiasmatic nucleus (SCN) is the main brain clock in mammals. The SCN synchronizes to the light-dark cycle through the retinohypothalamic tract (RHT). RHT axons release glutamate to activate AMPA-kainate and N-methyl-D-aspartate (NMDA) postsynaptic receptors in ventral SCN neurons. Stimulation of SCN NMDA receptors is necessary for the activation of the signaling cascades that govern the advances and delays of phase. To our knowledge, no research has been performed to analyze the functional synaptic modifications occurring during postnatal development that prepare the circadian system for a proper synchronization to light at adult ages. Here, we studied the pre- and postsynaptic developmental changes between the unmyelinated RHT-SCN connections. Spontaneous NMDA excitatory postsynaptic currents (EPSCs) were greater in amplitude and frequency at postnatal day 34 (P34) than at P8. Similarly, both quantal EPSCs (miniature NMDA and evoked quantal AMPA-kainate) showed a development-dependent increase at analyzed stages, P3-5, P7-9, and P13-18. Moreover, the electrically evoked NMDA and AMPA-kainate components were augmented with age, although the increment was larger for the latter, and the membrane resting potential was more depolarized at early postnatal ages. Finally, the short-term synaptic plasticity was significantly modified during postnatal development as was the estimated number of quanta released and the initial release probability. All of these synaptic modifications in the unmyelinated RHT-SCN synapses suggest that synchronization to light at adult ages requires developmental changes similar to those that occur in myelinated fast communication systems.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

SAGE Publications

Subject

Physiology (medical),Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3