Dynamics of a Multistage Circadian System

Author:

Leise Tanya1,Siegelmann Hava2

Affiliation:

1. Department of Mathematics and Computer Science, Amherst College, Amherst, MA 01002,

2. Department of Computer Science, University of Massachusetts, Amherst, MA 01003

Abstract

Tissues throughout the body exhibit circadian rhythms, forming a multioscillatory system whose disruption results in jet lag and other health problems in travelers and rotational shift workers. The authors’ simulations of the dynamics of a multistage circadian system (based on experimental results for nocturnal rodents) reveal the flexibility and stability inherent in a multistage system, as well as potential pitfalls. The modeling predicts that jet lag tends to be most severe following an eastward change of 5 to 8 time zones due to prolonged desynchrony of the system. This desynchrony is partly due to differing reentrainment rates among components, but a much greater source of desynchrony is the antidromic reentrainment of some but not all components (reentrainment by partition), triggered by the overshoot of the master pacemaker’s phase in response to these advances. Based on the multistage system dynamics, the authors design a simple protocol that results in a more orderly transition that avoids antidromic reentrainment in all components, thereby reducing the reentrainment time from nearly 2 weeks to just a few days for the most difficult shifts. The authors compare the predicted behavior of self-sustaining versus damped oscillatory components in the system as well as the effect of weak versus strong coupling from the master pacemaker to the peripheral components.

Publisher

SAGE Publications

Subject

Physiology (medical),Physiology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3