Inhibition of GABA Transaminase Enhances Light-Induced Circadian Phase Delays but Not Advances

Author:

Golombek Diego A.1,Ralph Martin R.1

Affiliation:

1. Department of Psychology, University of Toronto, 100 St. George Street, Toronto, Ontario M5S 1A1, Canada

Abstract

The CNS neurotransmitter GABA is distributed extensively throughout the suprachiasmatic nucleus, the site of circadian pacemaker cells in mammals. Pharmacological agents that act at GABAA receptors alter specific circadian responses to light and may induce phase shifts of circadian rhythms. In the present study, the role of endogenously released GABA in rhythm regulation was investigated using vigabatrin (γ-vinyl GABA), an agent that has been shown to increase chronically or acutely the CNS levels of this neurotransmitter by inhibiting GABA transaminase. In Experiment 1, hamsters in constant darkness (DD) received a saline or a vigabatrin injection 1 hr before a 15-min, 700-lux light pulse. Vigabatrin increased photic phase delays but did not affect advances. In Experiment 2, vigabatrin delivered chronically via osmotic minipump treatment did not affect locomotor activity period in DD. However, after 14 days of infusion, photic phase delays (but not advances) were greatly increased in the vigabatrin group. In Experiment 3, in constant light (LL), chronic vigabatrin-treated animals showed an increased period that returned to pretreatment values after the 14-day drug infusion. The results are consistent with the phase-dependent effects of other agents that alter GABA neurotransmission. The data support the general hypothesis that GABA modulates the circadian responses to light in a phase-dependent manner, and may participate in entrainment to light-dark cycles by influencing the relative responsiveness to light in the early and late subjective night.

Publisher

SAGE Publications

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3