Masking of the Circadian Rhythms of Heart Rate and Core Temperature by the Rest-Activity Cycle in Man

Author:

Gander Philippa H.1,Connell Linda J.1,Graeber R. Curtis1

Affiliation:

1. Mail Stop 239-21, NASA Ames Research Center, Moffett Field, California 94035

Abstract

Heart rate and core temperature are elevated by physical activity and reduced during rest and/or sleep. These masking effects may confound interpretation of rhythm waveforms, particularly in situations where the rest-activity rhythm has a different period from that of the core temperature rhythm. Such desynchronization often occurs temporarily as an individual adjusts to a new work shift or to a new time zone following rapid transmeridian travel, making it difficult to assess the impact of such schedule changes on the circadian system. The present experiments were designed to estimate the magnitude of these masking effects, by monitoring the heart rate, rectal temperature, and nondominant wrist activity (2-min samples) of 12 male subjects during 6 days of normal routine outside the lab and during 6 days of strict bedrest. Subjects also kept sleep, dietary, and exercise logs throughout the study. Average (20- min) waveforms were computed for each subject and each rhythm, at home and in bedrest. In addition, data were partitioned according to self-reported sleep and wake times and were analyzed separately for each state. Average waveform comparisons indicated that about 45% of the range of the circadian heart rate rhythm during normal routine was attributable to the masking effects of activity during wake, which also produced a 16% elevation in mean heart rate during wake and an 11% increase in mean heart rate overall. (Analysis of variance indicated that mean heart rate during sleep at home was not significantly different from the mean during sleep in bedrest.) On average, about 14% of the range of the circadian temperature rhythm during normal routine was attributable to the effects of activity masking. However, the change in range of the temperature rhythm, from home to bedrest, was very variable between subjects (—41% to +13%). This variability was not accounted for by age or by reported frequency of exercise at home. Normal activity during wake increased the mean temperature during wake by an average of 0.16° C and the overall mean by about 0.12° C. (Analysis of variance indicated that mean temperature during sleep at home was not significantly different from the mean during sleep in bedrest.) A 10-hr "night" (lights-off from 2200 to 0800 hr) was provided during bedrest, within which subjects could select their own sleep times. Times of sleep onset and wake onset were not significantly different between home and bedrest. Nevertheless, most subjects showed small phase shifts in their heart rate and temperature rhythms, which were not significantly correlated with the small changes in sleep times, but were significantly correlated with subjects scores on the Horne and Ostberg (1976) morningness-eveningness questionnaire. These shifts in the heart rate and core temperature rhythms were probably attributable to masking-induced changes in waveshape, rather than to real phase shifts of the circadian timing system. These data indicate that normal wake-time activities produce major masking effects on the circadian heart rate rhythm and somewhat smaller effects on the temperature rhythm. This may be partially attributable to core temperature's being more rigorously conserved than heart rate, at least during moderate exercise.

Publisher

SAGE Publications

Subject

Physiology (medical),Physiology

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3