Affiliation:
1. Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan;
2. Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan
Abstract
From the mathematical study of simple models for circadian rhythm, the authors identified a clear effect of saturation in the enzyme kinetics on the promotion or suppression of a sustained oscillation. In the models, a clock gene ( pergene) is transcribed to produce mRNAs, which are translated to produce proteins in the cytosol, which are then transported to the nucleus and suppress the transcription of the gene. The negative feedback loop with a long time delay creates sustained oscillation. All the enzymatic reactions (e.g., degradation, translation, and modification) are assumed to be of Michaelis-Menten type. The reaction rate increases with the amount of substrate but saturates when it is very large. The authors prove mathematically that the saturation in any of the reactions included in the feedback loop (in-loop reaction steps) suppresses the oscillation, whereas the saturation of both degradation steps and the back transport of the protein to cytosol (branch reaction steps) makes the oscillation more likely to occur. In the experimental measurements of enzyme kinetics and in published circadian clock simulators, in-loop reaction steps have a small saturation index whereas branch reaction steps have a large saturation index.
Subject
Physiology (medical),Physiology
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献