Cryptochrome, Compound Eyes, Hofbauer-Buchner Eyelets, and Ocelli Play Different Roles in the Entrainment and Masking Pathway of the Locomotor Activity Rhythm in the Fruit Fly Drosophila Melanogaster

Author:

Rieger Dirk1,Stanewsky Ralf1,Helfrich-Förster Charlotte2

Affiliation:

1. University of Regensburg, Institute of Zoology, 93040 Regensburg, Germany

2. University of Regensburg, Institute of Zoology, 93040 Regensburg, Germany,

Abstract

The fly Drosophila melanogaster possesses five photoreceptors and/or photopigments that appear to be involved in light reception and synchronization of the circadian clock: (1) the compound eyes, (2) the ocelli, (3) the Hofbauer-Buchner eyelets, (4) the blue-light photopigment cryptochrome, and (5) unknown photopigments in the clock-gene-expressing dorsal neurons. To understand the contributions of these photoreceptors and photopigments to synchronization, the authors monitored the flies' activity rhythms under artificial long and short days. They found that all the different photoreceptors and photo-pigments contribute significantly to entrainment under each photoperiod, but the compound eyes are especially important for entrainment to extreme photoperiods. The compound eyes are, furthermore, necessary for adjusting the phase of the activity rhythm, for distinguishing long days from constant light, and for the normal masking effects of light—namely, promotion of activity by lights-on and inhibition of activity by darkness. Cryptochrome is important for period lengthening under long days, although it is more important for entrainment to short days than to long days and is, furthermore, important for after effects of the photoperiod on the internal clock. The specific roles of the remaining photoreceptors are more difficult to assess.

Publisher

SAGE Publications

Subject

Physiology (medical),Physiology

Cited by 186 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3