The Hepato-Hypothalamic-Pituitary-Adrenal-Renal Axis: Mathematical Modeling of Cortisol’s Production, Metabolism, and Seasonal Variation

Author:

Pierre Kamau1,Schlesinger Naomi2,Androulakis Ioannis P.134

Affiliation:

1. Biomedical Engineering Department, Rutgers University, Piscataway, New Jersey

2. Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey

3. Chemical & Biochemical Engineering Department, Rutgers University, Piscataway, New Jersey

4. Department of Surgery, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey

Abstract

Cortisol dynamics are governed by the integration of influences from the suprachiasmatic nucleus (SCN), the hypothalamic-pituitary-adrenal (HPA) axis, and metabolic enzymes, such as the 11β–hydroxysteroid dehydrogenase (HSD) family, which are highly expressed in hepatic and renal tissue. The coordinated regulation of cortisol dynamics is essential for the maintenance of a healthy state, and aberrant cortisol circadian rhythms are associated with various pathophysiological conditions. The duration of the light-dark cycle, or photoperiod, which regulates SCN activity, varies seasonally, and the shorter photoperiod winter season is associated with elevated cortisol levels, peak inflammatory disease incidence, and symptom exacerbation. Elevated expression and activity of 11β-HSD1 protein, assumed to also occur during the winter, have been allied with numerous inflammatory conditions. A comprehensive understanding of the communication between the underlying regulatory mechanisms of cortisol as well as how changes in their activity could lead to the development of disease is yet to be elucidated. In this work, we propose the use of a semimechanistic mathematical model to explore the impact of the hepato-hypothalamic-pituitary-adrenal-renal axis in modulating neuroendocrine-immune system dynamics. Our model predicts the predominance of a winter proinflammatory state and that genetic variations could alter 11β-HSD enzyme functionality, rendering certain subpopulations more susceptible to disease as a consequence of HPA axis dysregulation.

Publisher

SAGE Publications

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3