Fos in the Suprachiasmatic Nucleus of House Mouse Lines That Reveal a Different Phase-Delay Response to the Same Light Pulse

Author:

Amy Scott P.,Chari Ramya1,Bult Abel2

Affiliation:

1. Department of Biology, Middlebury College, Middlebury, VT 05753, USA

2. Institute of Arctic Biology, University of Alaska Fairbanks, P.O. Box 757000, Fairbanks, AK 99775-7000, USA

Abstract

Increased light intensity of a 5-min light pulse is positively correlated with Fos mRNA and Fos protein levels in the suprachiasmatic nucleus (SCN) of hamsters. These findings suggest that the level of Fos activation is proportional to the light intensity and that the magnitude of the phase-shift response depends on the level of Fos activation. However, to what extent different phase-delay responses to the same light pulse are mediated by differential Fos activation is unknown. To elucidate this, the authors used selected house mouse lines that reveal an almost threefold difference in phase-delay responses in constant darkness (DD) between circadian time (CT) 16 and CT 20 to the same light pulse. The authors measured wheel-running activity and subjected male mice of these lines to a 15-min light pulse at CT 16 after 2 weeks in DD. The behavioral response was measured and 10 to 12 days later the animals were again subjected to the same light pulse at CT 16. One hour after the start of the second light pulse, the animals were sacrificed for Fos immunocytochemistry. Results indicate a significant difference between the lines in the phase-delay response (F2,26= 5.112, p < 0.017) and the level of Fos activation (F2,26= 27.15, p < 0.0001) after a 15-min light pulse at CT 16. These findings support the hypothesis that the magnitude of the phase-delay response is proportional to the number of cells in the SCN that exhibit Fos induction after the same 15-min light pulse at CT 16 in DD. It also indicates a possible difference in the input pathways among the lines.

Publisher

SAGE Publications

Subject

Physiology (medical),Physiology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3