An External Coincidence Model for the Lunar Cycle Reveals Circadian Phase-Dependent Moonlight Effects on Coral Spawning

Author:

Komoto Hideyuki1ORCID,Lin Che-Hung23,Nozawa Yoko2,Satake Akiko4

Affiliation:

1. Graduate School of Systems Life Science, Kyushu University, Fukuoka, Japan

2. Biodiversity Research Center, Academia Sinica, Taipei, Taiwan

3. Tropical Biosphere Research Center, University of Ryukyus, Okinawa, Japan

4. Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan

Abstract

Many marine organisms synchronously spawn at specific times to ensure the success of external fertilization in the ocean. Corals are famous examples of synchronized spawning at specific lunar phases, and two distinct spawning patterns have been observed in two dominant taxa: merulinid corals spawn at regular lunar phases, several days after the full moon, whereas Acropora corals spawn at more irregular lunar phases around the full moon. Although it has been suggested that the two coral taxa have different responses to moonlight and seawater temperature, their spawning times have never been analyzed by integrating the two environmental factors, resulting in an incomplete understanding of the regulatory mechanisms of spawning. In this study, we developed a new predictive model of coral spawning days by integrating moonlight and temperature effects based on the external coincidence model for the lunar cycle. We performed model fitting using a 10-year monitoring record of coral spawning time in Taiwan. Our model successfully demonstrated the synergistic effects of moonlight and temperature on coral spawning time (days) and provided two testable hypotheses to explain the different spawning patterns regarding the preparation (maturation) process for spawning and the sensitivity to moonlight at different circadian phases: (1) Acropora corals may have an earlier onset and longer period of preparation for spawning than merulinid corals; and (2) merulinid corals may use moonlight signals near sunset, while Acropora corals may have a similar onset at approximately midnight. This is the first study to indicate the difference in circadian phase-dependent moonlight sensitivities between coral taxa, providing a basis for underlying coral spawning mechanisms for rhythmic studies.

Publisher

SAGE Publications

Subject

Physiology (medical),Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3