The Endogenous Circadian Pacemaker Imparts a Scale-Invariant Pattern of Heart Rate Fluctuations across Time Scales Spanning Minutes to 24 Hours

Author:

Kun Hu 1,Scheer Frank A. J. L.2,Buijs Ruud M.3,Shea Steven A.1

Affiliation:

1. Division of Sleep Medicine, Brigham and Women's Hospital, Boston, Massachusetts,

2. Division of Sleep Medicine, Brigham and Women's Hospital, Boston, Massachusetts, Department of Hypothalamic Integration Mechanisms, Netherlands Institute for Brain Research, Amsterdam, The Netherlands

3. Department of Hypothalamic Integration Mechanisms, Netherlands Institute for Brain Research, Amsterdam, The Netherlands, Department Physiology, Instituto Biomedicas, Universidad Nacional Autónoma de México, Mexico City, Mexico

Abstract

Heartbeat fluctuations in mammals display a robust temporal structure characterized by scale-invariant/fractal patterns. These scale-invariant patterns likely confer physiological advantage because they change with cardiovascular disease and these changes are associated with reduced survival. Models of physical systems imply that to produce scale-invariant patterns, factors influencing the system at different time scales must be coupled via a network of feedback interactions. A similar cardiac control network is hypothesized to be responsible for the scale-invariant pattern in heartbeat dynamics, although the essential network components have not been determined. Here is shown that scale-invariant cardiac control occurs across time scales from minutes to ~24 h, and that lesioning the mammalian circadian pacemaker (suprachiasmatic nucleus; SCN) completely abolishes the scale-invariant pattern at time scales >~4 h. At time scales <~4 h, the scale invariance persisted following SCN lesion but with a different pattern. These results indicate previously unrecognized multiscale influences of the SCN on heart rate fluctuations that cannot be explained by a simple pacemaker of 24-h rhythmicity. The conclusion is that the SCN serves as a major node in the cardiac control network and imparts scale-invariant cardiac control across a wide range of time scales with strongest effects between ~4 and 24 h. These results demonstrate that experimental manipulations (e.g., SCN lesion) can be used to begin to model and understand the origin of scale-invariant behavior in a neurophysiological system.

Publisher

SAGE Publications

Subject

Physiology (medical),Physiology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3