Lab Mice in the Field: Unorthodox Daily Activity and Effects of a Dysfunctional Circadian Clock Allele

Author:

Daan Serge1,Spoelstra Kamiel2,Albrecht Urs3,Schmutz Isabelle3,Daan Moritz3,Daan Berte4,Rienks Froukje5,Poletaeva Inga6,Dell'Omo Giacomo7,Vyssotski Alexei7,Lipp Hans-Peter7

Affiliation:

1. Centre for Life Sciences, University of Groningen, The Netherlands,

2. Centre for Life Sciences, University of Groningen, The Netherlands

3. Department of Medicine, University Fribourg, Switzerland, University of Leiden, The Netherlands

4. ETH Zürich, Switzerland

5. Netherlands Institute of Ecology, Nieuwersluis, The Netherlands

6. Laboratory of Physiology and Genetics of Behavior, Moscow State University, Moscow, Russia

7. Division of Neuroanatomy and Behavior, Institute of Anatomy, University of Zürich, Switzerland

Abstract

Daily patterns of animal behavior are potentially of vast functional importance. Fitness benefits have been identified in nature by the association between individual timing and survival or by the fate of individuals after experimental deletion of their circadian pacemaker. The recent advances in unraveling the molecular basis of circadian timing enable new approaches to natural selection on timing. The investigators report on the effect and fate of the mutant Per2Brdm1 allele in 4 replicate populations of house mice in a seminatural outside environment over 2 years. This allele is known to compromise circadian organization and entrainment and to cause multiple physiological disturbances. Mice ( N = 250) bred from Per2Brdm1 heterozygotes were implanted subcutaneously with transponders and released in approximately Mendelian ratios in four 400 m2 pens. An electronic system stored the times of all visits to feeders of each individual. The study first demonstrates that mice are not explicitly nocturnal in this natural environment. Feeding activity was predominantly and sometimes exclusively diurnal and spread nearly equally over day and night under the protective snow cover in winter. The effect of Per2Brdm1 on activity timing is negligible compared to seasonal changes in all genotypes. Second, the Per2Brdm1 allele did not have persistent negative effects on fitness. In the first year, the allele gradually became less frequent by reducing survival. New cohorts captured had the same Per2Brdm1 frequency as the survivors from previous cohorts, consistent with an absence of an effect on reproduction. In the second year, the allele recovered to about its initial frequency (0.54). These changes in selective advantage were primarily due to female mice, as females lived longer and the sex ratio dropped to about 25% males in the population. While it is unknown which selective advantage led to the recovery, the results caution against inferences from laboratory experiments on fitness consequences in the natural environment. It also demonstrates that the activity of mice, while strictly nocturnal in the laboratory, may be partially or completely diurnal in the field. The new method allows assessment of natural selection on specific alleles on a day-today basis.

Publisher

SAGE Publications

Subject

Physiology (medical),Physiology

Cited by 122 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3