Distribution of Circadian Clock-Related Proteins in the Cephalic Nervous System of the Silkworm, Bombyx Mori

Author:

Sehadová Hana1,Markova Elitza P.2,Sehnal Frantisek3,Takeda Makio4

Affiliation:

1. Division of Molecular Science, Graduate School of Science and Technology, Kobe University, Japan; Institute of Entomology, Czech Academy of Sciences, České Budějovice, Czech Republic

2. Division of Molecular Science, Graduate School of Science and Technology, Kobe University, Japan

3. Institute of Entomology, Czech Academy of Sciences, České Budějovice, Czech Republic

4. Division of Molecular Science, Graduate School of Science and Technology, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan

Abstract

In the circadian timing systems, input pathways transmit information on the diurnal environmental changes to a core oscillator that generates signals relayed to the body periphery by output pathways. Cryptochrome (CRY) protein participates in the light perception; period (PER), Cycle (CYC), and Doubletime (DBT) proteins drive the core oscillator; and arylalkylamines are crucial for the clock output in vertebrates. Using antibodies to CRY, PER, CYC, DBT, and arylalkylamine N-acetyltransferase (aaNAT), the authors examined neuronal architecture of the circadian system in the cephalic ganglia of adult silkworms. The antibodies reacted in the cytoplasm, never in the nuclei, of specific neurons. Acluster of 4 large Ia1 neurons in each dorsolateral protocerebrum, a pair of cells in the frontal ganglion, and nerve fibers in the corpora cardiaca and corpora allata were stained with all antibodies. The intensity of PER staining in the Ia1 cells and in 2 to 4 adjacent small cells oscillated, being maximal late in subjective day and minimal in early night. No other oscillations were detected in any cell and with any antibody. Six small cells in close vicinity to the Ia1 neurons coexpressed CYC-like and DBT-like, and 4 to 5 of them also coexpressed aaNATlike immunoreactivity; the PER- and CRY-like antigens were each present in separate groups of 4 cells. The CYC- and aaNAT-like antigens were further colocalized in small groups of neurons in the pars intercerebralis, at the venter of the optic tract, and in the subesophageal ganglion. Remaining antibodies reacted with similarly positioned cells in the pars intercerebralis, and the DBT antibody also reacted with the cells in the subesophageal ganglion, but antigen colocalizations were not proven. The results imply that key components of the silkworm circadian system reside in the Ia1 neurons and that additional, hierarchically arranged oscillators contribute to overt pacemaking. The retrocerebral neurohemal organs seem to serve as outlets transmitting central neural oscillations to the hemolymph. The frontal ganglion may play an autonomous function in circadian regulations. The colocalization of aaNAT- and CYC-like antigens suggests that the enzyme is functionally linked to CYC as in vertebrates and that arylalkylamines are involved in the insect output pathway.

Publisher

SAGE Publications

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3