timeless Is an Essential Component of the Circadian Clock in a Primitive Insect, the Firebrat Thermobia domestica

Author:

Kamae Yuichi1,Tomioka Kenji1

Affiliation:

1. Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan

Abstract

Recent studies show that the timeless ( tim) gene is not an essential component of the circadian clock in some insects. In the present study, we have investigated whether the tim gene was originally involved in the insect clock or acquired as a clock component later during the course of evolution using an apterygote insect, Thermobia domestica. A cDNA of the clock gene tim ( Td’tim) was cloned, and its structural analysis showed that Td’TIM includes 4 defined functional domains, that is, 2 regions for dimerization with PERIOD (PER-1, PER-2), nuclear localization signal (NLS), and cytoplasmic localization domain (CLD), like Drosophila TIM. Td’tim exhibited rhythmic expression in its mRNA levels with a peak during late day to early night in LD, and the rhythm persisted in DD. A single injection of double-stranded RNA (dsRNA) of Td’tim (ds tim) into the abdomen of adult firebrats effectively knocked down mRNA levels of Td’tim and abolished its rhythmic expression. Most dsRNA-injected firebrats lost their circadian locomotor rhythm in DD up to 30 days after injection. DsRNA of cycle ( cyc) and Clock genes also abolished the rhythmic expression of Td’tim mRNA by knocking down Td’tim mRNA to its basal level of intact firebrats, suggesting that the underlying molecular clock of firebrats resembles that of Drosophila. Interestingly, however, ds tim also reduced cyc mRNA to its basal level of intact animals and eliminated its rhythmic expression, suggesting the involvement of Td’tim in the regulation of cyc expression. These results suggest that tim is an essential component of the circadian clock of the primitive insect T. domestica; thus, it might have been involved in the clock machinery from a very early stage of insect evolution, but its role might be different from that in Drosophila.

Publisher

SAGE Publications

Subject

Physiology (medical),Physiology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3