Data science in organizations: Conceptualizing its breakthroughs and blind spots

Author:

Cybulski Jacob L1ORCID,Scheepers Rens1

Affiliation:

1. Deakin University, Australia

Abstract

The field of data science emerged in recent years, building on advances in computational statistics, machine learning, artificial intelligence, and big data. Modern organizations are immersed in data and are turning toward data science to address a variety of business problems. While numerous complex problems in science have become solvable through data science, not all scientific solutions are equally applicable to business. Many data-intensive business problems are situated in complex socio-political and behavioral contexts that still elude commonly used scientific methods. To what extent can such problems be addressed through data science? Does data science have any inherent blind spots in this regard? What types of business problems are likely to be addressed by data science in the near future, which will not, and why? We develop a conceptual framework to inform the application of data science in business. The framework draws on an extensive review of data science literature across four domains: data, method, interfaces, and cognition. We draw on Ashby’s Law of Requisite Variety as theoretical principle. We conclude that data-scientific advances across the four domains, in aggregate, could constitute requisite variety for particular types of business problems. This explains why such problems can be fully or only partially addressed, solved, or automated through data science. We distinguish between situations that can be improved due to cross-domain compensatory effects, and problems where data science, at best, only contributes merely to better understanding of complex phenomena.

Publisher

SAGE Publications

Subject

Library and Information Sciences,Strategy and Management,Information Systems

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3