Processing and Characterization of Nanophased Polyurethane Foams

Author:

Mohammed Aleem A.1,Hosur M.V.1,Jeelani S.1

Affiliation:

1. Center for Advanced Materials, Tuskegee University, Tuskegee, AL-36088, USA

Abstract

Nanophased polyurethane foams were prepared with the inclusion of 0.5% and 1% nanoclay. Samples were subjected to static and dynamic compression loading. Compression behavior of neat (without nanoclay) and nanophased foams were compared. Quasi-static compression testing was carried out using MTS system whereas a Split Hopkinson's Pressure Bar (SHPB) was used to characterize the high strain rate behavior at three different strain rates of approximately 1000, 1450, 1750 s−1. It was found that by increasing the strain rate peak stress and modulus of foams increased. Nanoclay filled polyurethane foam exhibited improved mechanical properties over the neat system. Microstructural analysis revealed that cell wall thickness of nanoclay filled foam was more than that of the neat foam which caused an increase in the cell density (number of cells per unit area) resulting in increased mechanical properties.

Publisher

SAGE Publications

Subject

Organic Chemistry,Polymers and Plastics

Reference16 articles.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3