Preparation and characterization of PLA foam chain extended through grafting octa(epoxycyclohexyl) POSS onto carbon nanotubes

Author:

Liu Wei1ORCID,Zhu Xunxian1,Gao Hongxiang1,Su Xiangdong2,Wu Xian1

Affiliation:

1. School of Materials and Metallurgical Engineering, Guizhou Institute of Technology, Guiyang City, Guizhou Province, People’s Republic of China

2. Key Laboratory of Light Metal Materials Processing Technology of Guizhou Province, Guizhou Institute of Technology, Guiyang, Guizhou, People’s Republic of China

Abstract

Improving foamability of poly (lactic acid) (PLA) resin is a key issue for its critical foaming applications with high-performance and ultralow density. However, owing to the rheological nature of linear PLA chain structure with relatively low molecular weight, the overall foamability of PLA resin cannot meet the processing requirements of foaming purpose. Here, we describe a simple and versatile technique to prepare high foamability PLA resin by inducing chain extender through grafting octa(epoxycyclohexyl) polyhedral oligomeric silsesquioxanes (POSS) on carbon nanotubes (CNT). After the orderly assemble of the two nanoparticles, an obvious increase in melt elasticity of PLA is observed. The enhanced melt elasticity of PLA had a significant effect on controlling subsequent foaming behavior. Thus, a homogeneous and finer cellular morphology of PLA rigid foam was obtained with a proper content of CNT-POSS. Eventually, the expansion ratio of chain-extended PLA foam was 13 times higher than that of unmodified PLA foam. The proposed design methodology will potentially pave a way for designing and preparing high-performance PLA rigid foam products.

Funder

Special Project of Cultivating New Academic Seedlings and Exploring Innovation for Guizhou Institute of Technology

Publisher

SAGE Publications

Subject

Organic Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3