Influence of particle geometry and size on the cell morphology of vacuum assisted rotationally molded foam

Author:

Werner J1ORCID,Drummer D1

Affiliation:

1. Lehrstuhl für Kunststofftechnik, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany

Abstract

An increased awareness of sustainability among the population leads, from an industrial point of view, to efforts to act more ecologically as well as to the aim for lower production costs and an increased efficiency. With this in mind, a new process has been developed for foaming without blowing agents in rotational molding. Process related air inclusions in the polymer melt are expanded to form the cell structure by means of vacuum application. In the presented study, the influence of different particle sizes as well as the arising potential of deploying microgranules in the otherwise powder-based process is investigated with regard to the resulting foam cells. The results confirm that particle size and form greatly influence the existence and size of air inclusions in the polymer melt. It could be proven that these differences, caused by the particle characteristics, propagate during the foaming process and lead to different cell morphologies in the resultant foam. Furthermore, it is indicated that qualitative predictions of the resulting cell dimensions can be made on the basis of bulk density measurements and the analysis of the sintering behaviour of the initial particles.

Funder

Bayerische Staatsministerium für Wirtschaft, Landesentwicklung und Energie

Publisher

SAGE Publications

Subject

Organic Chemistry,Polymers and Plastics

Reference27 articles.

1. Crawford RJ, Kearns MP. Practical guide to rotational moulding. 2nd ed. Shawbury: iSmithers Rapra Publishing, 2012, p.19.

2. Development, characterization, and modeling of environmentally friendly open-cell acoustic foams

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3