Foamed Polyurethane Composites with Different Types of Ash – Morphological, Mechanical and Thermal Behavior Assessments

Author:

Hejna Aleksander1,Kopczyńska Milena1,Kozłowska Urszula1,Klein Marek2,Kosmela Paulina1,Piszczyk Łukasz1

Affiliation:

1. Department of Polymer Technology, Chemical Faculty, Gdansk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland

2. Renewable Energy Department, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland

Abstract

Incorporation of two types of ash particles into flexible polyurethane foams has been investigated, wood ash from gasification process and fly ash resulting from coal burning in power plant. Samples were modified with 5, 10 and 15 wt% of fillers. Structure, mechanical and thermal properties of obtained foams were investigated. Incorporation of both types of ash particles resulted in materials showing satisfactory mechanical properties, simultaneously decreasing their density. Addition of fly ash inhibited noticeably thermal degradation of material, because of the thermal insulation effect of gas trapped in the spherical ash particles. Results of research show that fly ash can be successfully used as a modifier of thermal properties in polyurethane foams, enhancing the economical aspect of the production through the decrease of material's density and incorporation of low cost filler.

Publisher

SAGE Publications

Subject

Organic Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3