Morphological Analysis of Foamed HDPE/LLDPE Blends by X-ray Micro-Tomography: Effect of Blending, Mixing Intensity and Foaming Temperature

Author:

Shahi Peyman1,Behravesh Amir Hossein1,Rasel Sheikh2,Rizvi Ghaus2,Pop-Iliev Remon2

Affiliation:

1. Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran, P.O.Box: 14115-143, Iran

2. Department of Automotive, Mechanical and Manufacturing Engineering, University of Ontario Institute of Technology, Oshawa, Ontario, L1H 7K4, Canada

Abstract

Non-invasive x-ray micro-computed tomography was employed for thorough quantitative and qualitative analysis of the cellular structure of foams made of linear low density polyethylene (LLDPE), high density polyethylene (HDPE) and their blends. Special emphasis was given to the differences between the results of 3D and 2D analyses, to evaluate the possible errors while studying the morphology using conventional 2D techniques (e.g. SEM). Blends with the weight compositions of 90%LLDPE/10%HDPE and 75%LLDPE/25%HDPE were produced at different rotor speeds of 10, 60 and 120 rpm and batch foaming was examined over a wide range of temperature. The void fraction values from 2D and 3D analysis were found to agree well with those obtained with the Archimedes method. Results showed more uniform cell size distribution for blends mixed at the lower spectrum of screw rotational speed. Among the blends with higher void fraction values and relatively uniform cellular structure, higher average cell size (3–30%) and cell population density (1.25–2.5 times) were noticed in 3D analysis compared with 2D data. The micro-CT images at different cross sections revealed anisotropic cell growth and more elongated cells along the thickness of the specimen. It was also observed that, with increase in foaming temperature, cell shrink prevailed over cell coalescence in the samples with lower viscosity (prepared at low rpm of 10), while for those with higher viscosity (prepared at an rpm of 60) cell coalescence was more dominant.

Publisher

SAGE Publications

Subject

Organic Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3