Selection of Energy Absorbing Materials for Automotive Head Impact Countermeasures

Author:

Juntikka Rickard1,Hallström Stefan1

Affiliation:

1. Department of Aeronautical and Vehicle Engineering, Royal Institute of Technology (KTH), 100 44, Stockholm, Sweden

Abstract

Material candidates for energy absorption in head impact countermeasures for automotive applications are evaluated using both quasi-static and dynamic test methods. Ranking of different materials turns out to be difficult since the mechanical response of a material could vary considerably with temperature, especially for polymers. Twenty-eight selected materials, including foams, honeycombs and balsa wood are tested and evaluated. The materials are subjected to a sequence of tests in order to thin out the array systematically. Quasi-static uni-axial compression is used for initial mapping of the selected materials, followed by quasi-static shear and dynamic uni-axial compression. The quasi-static test results show that balsa wood has by far the highest energy absorption capacity per unit weight but the yield strength is too high to make it suitable for the current application. The subsequent dynamic compression tests are performed for strain rates between 56 s−1 and 120 s−1 (impact velocities between 1.4 and 3 m/s) and temperatures in the range −20 - 60 °C. The test results emphasize the necessity of including both strain rate and temperature dependency to acquire reliable results from computer simulations of the selected materials.

Publisher

SAGE Publications

Subject

Organic Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3