Fire retardancy, thermal, and physico-mechanical properties of semi-rigid water-blown polyurethane foam from palm oil-based polyol

Author:

Dzulkifli Mohd Haziq1ORCID,Yahya Mohd Yazid1,Majid Rohah A.2

Affiliation:

1. School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor, Malaysia

2. School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor, Malaysia

Abstract

This paper presents the experimental work undertaken to assess rigid palm oil-based polyurethane (PU) foam. The bio-composite foam was characterized to determine its foaming kinetics and morphology, as well as fire retardancy, thermal, and mechanical responses, which was later compared with its petrochemical-based counterpart. The palm oil-based foam displayed poor fire-retardancy performance based on Limiting Oxygen Index (LOI) and UL-94 Vertical Combustion Test. Although less char residue was produced, the palm oil-based PU foam exhibited higher onset degradation temperatures, indicating improved thermal stability. The Scanning Electron Microscopy (SEM) revealed finer cell sizes for the bio-based foam and a higher fraction of open cell structures, which affected its density and compressive properties. As a conclusion, the palm oil-based PU foam is a viable alternative to be utilized in low load-bearing and thermal environment applications.

Funder

Universiti Teknologi

Ministry of Higher Education

Publisher

SAGE Publications

Subject

Organic Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3